TFAWS Modeling Methods Paper Session

Assessment of OpenFOAM CFD library for numerical simulations of shock turbulence interactions (STI)

Salman Verma, Arnaud Trouvé & Christopher Cadou

<u>University of Maryland, College Park</u>

Joseph Ruf
NASA MSFC

Applications

- Supersonic film cooling for the J-2X nozzle extension
 - Large Eddy Simulations (LES) using OpenFOAM

Virtual probe

- Build a transfer function connecting measured fluctuations with upstream fluctuations
- With the help of LES (using OpenFOAM)

Why OpenFOAM?

- Getting very popular in
 - Academia &
 - Industry

Why?

- Free
- Open source
- Easy to extend/develop
- Several models for e.g., turbulence, combustion
- Unstructured meshes
- Scalability up to 1000s of CPUs

Assessment – why?

- OpenFOAM already used for flows with STI*** e.g.,
 - Vuorinen et al. (PoF, 25, 2013)
- But a systematic study of its efficacy is required
 - Similar to what Johnsen et al. (JCP, 229, 2010) did for high resolution DNS codes/methods
- Because STI*** impose conflicting requirements on CFD codes
 - For resolving turbulence
 - Numerical dissipation should be minimized
 - For capturing shocks
 - Numerical dissipation should be introduced

*** STI – shock turbulence interactions

Scope

Evaluate different

- Solvers/approaches inside OpenFOAM
- Time stepping schemes
- Limiters

Solvers/approaches

- rhoCentralFoam <u>centralFoam</u>
 - Ready made
 - No reported studies focused on STI***
 - Central schemes e.g., Kurganov et al. (JCP, 160, 2001)
 - Relatively easy for polyhedral framework
 - Validation & verification, Greenshields et al. (IJNMF, 63, 2010)
- artificialViscosityFoam <u>artificialFoam</u>
 - Already used e.g., Vuorinen et al. (PoF, 25, 2013)
 - Not ready made but fairly easy to code
 - Cook et al. (JCP, 203, 2005) & Bhagatwala et. al (JCP, 228, 2009)

*** STI – shock turbulence interactions

Time stepping schemes

Generally

- Schemes like fourth order accurate Runge Kutta (RK4) are used in research
- But codes like OpenFOAM, FLUENT don't offer those

Schemes

- Available
 - Implicit Euler (1st order)
 - OpenFOAM's "backward" (2nd Order)
- Implemented
 - RK4 (4th order)

Assessment - how?

Suite of carefully chosen benchmark cases, Johnsen et al. (JCP, 229, 2010)

3D Taylor-Green vortex

Initial conditions

$$\rho = 1,$$

$$u_1 = \sin x_1 \cos x_2 \cos x_3,$$

$$u_2 = -\cos x_1 \sin x_2 \cos x_3,$$

$$u_3 = 0,$$

$$p = 100 + \frac{[\cos(2x_3) + 2][\cos 2x_1 + \cos 2x_2] - 2}{16}$$

- Periodic boundary conditions
- Euler equations
- Well resolved at t=0
- t>0, vortex stretching, smaller scales
- Goals
 - Evaluate stability for severely under-resolved motions
 - Check measure of kinetic energy preservation

- Verification
- Normalized kinetic energy evolution

Source	T-G energy t=5
Brachet et al. [1]	1
Hybrid [2]	1
ADPDIS3D [2]	0.998
Stan [2]	0.976
Stan-I [2]	0.976
WENO [2]	0.916
OpenFOAM	1

- 1. M.E. Brachet et al., J. Fluid Mech. 130 (1983) 411–452
- 2. E. Johnsen et al., J. Comput. Phys. 229 (2010) 1213–37

- Comparing solvers
- centralFoam preserves Kinetic Energy (KE) but artificialFoam does not

Source	T-G energy t=5
Brachet et al. [1]	1
centralFoam	1
artificialFoam	0.972

1. M.E. Brachet et al., J. Fluid Mech. 130 (1983) 411–452

- Comparing time stepping schemes
- Solver crashes with Euler and backward schemes

Source	T-G energy t=5
Brachet et al. [1]	1
Implicit Euler	-
OpenFOAM's backward	-
RK4	1

1. M.E. Brachet et al., J. Fluid Mech. 130 (1983) 411–452

Shu-Osher problem (1D)

Initial conditions

$$(\rho, \mathbf{u}, \mathbf{p}) = \begin{cases} (3.857143, 2.629369, 10.33333), & x < -4 \\ (1+0.2\sin(5x), 0, 1), & x \ge -4 \end{cases}$$

- Boundary conditions
 - Zero gradient
- Euler equations
- Goals
 - Evaluate ability to capture
 - a shock wave
 - · its interaction with an unsteady density field
 - the waves propagating downstream of the shock

Shu-Osher problem (1D)

Verification

Shu-Osher problem (1D)

- Comparing solvers on a coarse grid
- Again centralFoam performs better than artificialFoam

• Initial conditions
$$(\bar{\rho}, \bar{\mathbf{u}}_1, \bar{\mathbf{p}}) = \begin{cases} (\rho_L, \mathbf{u}_L, \mathbf{p}_L) = (1, 1.5, 0.714286), & x < 3\pi/2 \\ (\rho_R, \mathbf{u}_R, \mathbf{p}_R) = (1.862069, 0.8055556, 1.755952), & x \ge 3\pi/2 \end{cases}$$

$$\rho = \overline{\rho} + \rho_L A_e \cos(k_1 x_1 + k_2 x_2),$$

$$u_1 = \overline{u}_1 + u_L A_v \sin \psi \cos(k_1 x_1 + k_2 x_2),$$

$$u_2 = -u_L A_v \cos \psi \cos(k_1 x_1 + k_2 x_2),$$

$$p = \overline{p}$$

Inflow boundary condition

$$\rho = \rho_L + \rho_L A_e \cos(k_2 x_2 - k_1 u_L t),$$

$$u_1 = u_L + u_L A_v \sin \psi \cos(k_2 x_2 - k_1 u_L t),$$

$$u_2 = -u_L A_v \cos \psi \cos(k_2 x_2 - k_1 u_L t),$$

$$p = p_L$$

- Euler equations
- Goals
 - Evaluate ability to capture
 - Shock-vorticity/entropy wave interaction

 U_2

 U_1

Verification

•
$$k_1 = \frac{k_2}{\tan \psi}, A_e = A_v = 0.025,$$

$$\psi = 45^{\circ}, k_2 = 1, t = 25$$

- Comparing solvers on a coarse grid
- centralFoam is better

- Comparing limiters on a coarse grid
- van Leer is better

Noh problem (3D)

Initial conditions (ICs)

$$\rho = 1,$$
 $u_i = -x_i / r,$
 $p = \varepsilon$

Analytical Solution (AS)

$$\rho = \begin{cases} 64, & r < t/3, \\ (1+t/r)^2, & r \ge t/3 \end{cases}$$

- Boundary conditions, from ICs and AS
- Euler equations
- Goals
 - Evaluate ability to predict
 - Post-shock density
 - Shock speed
 - Spherical shape on a cartesian grid

ρ

Noh problem (3D)

- Verification
- centralFoam, RK4 and van Leer

Source	$ ho_{mean}$
Exact	64.0
Hybrid [1]	63.2
ADPDIS3D [1]	63.3
Stan [1]	55.1
Stan-I [1]	54.9
WENO [1]	63.3
OpenFOAM	63.1

1. E. Johnsen et al., J. Comput. Phys. 229 (2010) 1213–37

Concluding remarks

- Overall, OpenFOAM seems to be suitable for handling Shock Turbulence Interactions (STI)
 - centralFoam performs better than artificialFoam
 - Fourth order accurate Runge Kutta (RK4) time stepping scheme is more stable than the schemes offered by OpenFOAM
 - van Leer limiter provides best predictions

Future work

Compare performance on canonical shock-turbulence interaction case

- Compare the solvers in terms of computational cost
- Compare performance on unstructured grids
 - Tetrahedral
 - Polyhedral
- Evaluate recent artificial diffusivity based methods e.g., Guermond et al. (JCP, 230, 2011)

Acknowledgements

- The authors would like to thank NASA and Melinda Nettles of the Marshall Space Flight Center for their support under NRA NNM13AA13G.
- Computational resources were provided by UMD
- The authors are grateful to Dr. Ville Vuorinen (Aalto University, Finland) for useful discussions.

Thank you; questions?